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Abstract

The Ebola Virus (EBOV) causes a hemorrhagic fever that is distinguished by a sudden onset of intense
headaches, fever and severe hemorrhages which can be fatal in less than a week. The largest Ebola outbreak to
date is currently underway, with 28.488 confirmed, probable and suspected cases reported, 15.239 laboratory
confirmed cases and 11.297 fatalities as of October 11th, 2015. Most of the cases have occurred in Sierra Leone,
Liberia and Guinea. The Ebola virus genus has five species: Zaire, Sudan, Tai Forest, Reston and Bundibugyo. The
Zaire virus has caused ten epidemics since its identification in 1976, with a mortality rate of 57%-88%. Fruit bats
appear to be the natural reservoir of EBOV, while human to human transmission is spread through direct contact of
infected bodily fluids; patients only acquire the ability to infect others when symptomatic. Once inside the host,
EBOV infects immune system cells directly and begins to replicate inside them while severely compromising it.
Recent evidence shows EBOV alters cytokine expression while expressing its own viral proteins causing significant
lymphopenia and lymphapoptosis, as well as endothelial damage. Massive hemorrhages throughout the body are
one of the cardinal points of EBOV infection; however, it is not as present in patients as it is believed. The current
outbreak has affected countries where sanitation is inadequate, resulting in the inability to control its spread. This
review aims to give a broad spectrum of the current findings in several fields to better comprehend Ebola´s fatal
Hemorrhagic Fever.

Keywords: Ebola virus disease; Hemorrhagic fever; Filoviridae;
Epidemic

Introduction
The Ebola virus (EBOV) causes a hemorrhagic fever that is

distinguished by a sudden onset of intense headaches, fever and severe
haemorrhages which can lead to death in less than a week [1,2]. The
largest Ebola outbreak to date (caused by the Zaire Ebolavirus or
ZEBOV) is currently underway, with 27.898 confirmed, probable and
suspected cases reported up to the 2nd of August of 2015, with 15.213
laboratory confirmed cases and 11.296 fatalities. Most of these cases
have occurred in Sierra Leone, Liberia, and Guinea, although there
have been isolated incidents in Mali, Nigeria, Senegal, Spain, the
United Kingdom and the United States of America. An increase in the
incidence rate was reported in Guinea towards the end of March, while
Sierra Leone’s rate remained stable and Liberia, which has been
declared a country with former widespread of transmission and
current, established control measures, however on June 29 the last case
of Liberia was reported and confirmed [3]. There is still no approved
treatment for this disease. The WHO believes that this epidemic’s first
case (patient zero) was an 18 month old boy who lived in Meliandou,
Guinea. The boy became sick the 26th of December of 2013,
developing fever, black bowel movements and vomiting, only to
succumb to the disease two days later. It is believed he probably
became infected after being in contact with some wild animal since he
had been playing near a bat infested tree shortly before presenting
symptoms. The first Ebola case was identified the 26th of August of
1976 in a small village in the north of the Democratic Republic of the

Congo (which was known back then as Zaire). Patient zero was the
village’s school principal, who likely became infected after walking near
the edges of the Ebola river between the 12th and 22nd of August. Two
weeks after the beginning of his symptoms, he died the 8th of
September. The current outbreak has affected countries where
sanitation is inadequate, resulting in the inability to control and
prevent its spread. However, thanks to the efforts of several
international organizations such as the WHO (World Health
Organization) and MSF (Medecins Sans Frontieres), appropriate
measures have been implemented to avoid a global health crisis [4].

The Ebola virus belongs to the family Filoviridae, whose virions
have a distinctive filament-like shape. However, it is a pleomorphic
virus, and therefore can adopt several shapes, reaching lengths of
19,000 nm. Its diameter is typically 80 nm. The virus’ genome consists
of a lineal molecule of negative single stranded RNA (19.1 kb), whose
organization is very similar to the members of the family
Paramyxoviridae (which are no segmented negative single stranded
viruses) [5-8]. The Ebola virus genus has five species, which are named
after the place where they first appeared: Zaire Ebola virus, Sudan
Ebolavirus, Tai Forest (Ivory Coast) Ebola virus, Reston Ebola virus
and Bundibugyo Ebolavirus [2]. The Zaire virus has caused ten
epidemics since its identification in 1976, affecting 30-300 people per
epidemic, with a mortality rate of 57-88% [9]. There have been four
reported outbreaks of the Sudan virus, two in Sudan in the 1960s, one
in Uganda in 2000, and another in Sudan in 2004, with a mortality rate
of 50% [10]. However, other sources report a mortality rate of
41%-65% [11]. The Ivory Coast virus has only been identified in one
person, who survived the infection [12]. The Reston virus does not
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appear to have affected humans, and its reservoir appears to be some
animals in the Philippines. The Bundibugyo virus appeared in Uganda
in 2007, with a mortality rate of 30%, although other sources mention
up to 40% [1,13].

Transmission
The Ebola virus’ natural reservoir is still to be determined, although

it is thought that infection occurs when people come into contact with
certain animal species, whether they are alive or dead. Possible
reservoirs include chimpanzees, gorillas, forest antelopes, hedgehogs
and fruit bats [3,10,14].

Natural Reservoirs
Fruit bats appear to be the natural reservoir of EBOV, particularly

the hammer-headed fruit bat (Hypsignathus monstrosus), Franquet’s
epailetted fruit bat (Epomops franqueti) and the little collared fruit bat
(Myonicteris torquata). These bats are common in Subsaharan Africa
and migrate between countries. It is believed that this is how the
EBOV got to Guinea. Humans may have been infected by the hunting
or eating of these animals, which had been suspected in Gabon
[15-19].

The infection by ZEBOV in Epomops franqueti, Hypsignathus
monstrosus and Myonectris torquata affects the spleen and liver in 3%
of bats, while 7% have IgG against ZEBOV. This is unlike humans,
where the virus disseminates to the whole body [16]. Considering this,
we can understand how outbreaks occur in the west and east sides of
Africa. The asymptomatic host animal migrates across the continent,
spreading the virus upon its arrival [20,21]. Epidemiological studies
have shown that chimpanzees were the source of infection in the Ivory
Coast case in 1994 and in an outbreak in Gabon in 1996 [22,23].

Another study showed that rhesus macaques inoculated with
ZEBOV could infect other monkeys in a cage three meters away,
without having any direct contact. Transmission probably occurred
due to aerosolized droplets that came in contact with the oral,
conjunctival or nasopharyngeal mucosa. A similar experiment was
conducted using guinea pigs and rhesus macaques, with the same
result. The CDC confirmed that five people who came in contact with
pigs infected by the Reston virus developed antibodies against it,
without ever presenting symptoms [24-27].

Transmission in Humans
The route of transmission of primary infections by Filoviridae in

humans is unknown. Secondary infections however, are caused by
being in close proximity with infected patients, namely direct contact
with their blood, tissues or other bodily fluids. Infection can also occur
due to poor handling of a contaminated water source [28,29].

The Ebola virus is spread through direct contact of infected bodily
fluids with the patient’s own bodily fluids. These fluids include saliva,
breast milk, tears, blood, sweat, urine, feces, vaginal secretions, vomit
and amniotic fluid. Consequently, the virus may enter through the
mucous membranes, through a parenteral route, or through a skin
lesion. Another possible route of infection is the ingestion of animals
that function as natural hosts [30-33].

A study conducted by Bausch et al. demonstrated the presence of
the virus during the acute phase of the disease in a variety of bodily
fluids. The virus was detected in the urine, sweat (albeit in low

concentrations) and saliva (where it would rapidly deactivate). Hence,
infection rates due to fomites, casual encounters and the sharing of
toilets are relatively low [33].

ZEBOV has been isolated in the semen of an affected patient using
RT-PCR, up to 82 and 91 days after the disease’s debut [34]. The
Marburg virus has also been isolated in semen and can be transmitted
sexually in a period similar to that of ZEBOV. It is believed that the
virus is able to survive for longer periods of time in immunologically
privileged sites, such as the gonads, mammary glands and eye
chambers [35-37]. The presence of ZEBOV in breastmilk increases the
likelihood of direct transmission from mother to child. The virus’
reportedly low presence in saliva samples may be due to rapid
deactivation by enzymes or other substances found in saliva [38].
However, it has been shown that patients with positive saliva samples
(determined by RT-PCR) have a higher mortality rate, linked to
elevated viral shedding and viremia, which has been identified as a
poor prognostic factor [38-40].

Pathophysiology
Once inside the host, the virus faces the first line of defense: The

innate immune system. Said line of defense includes
polymorphonuclear leukocytes (PMN), dendritic cells (DC) and
macrophages (MQ). The virus infects dendritic cells, macrophages and
monocytes directly [41]. In the days following the infection, the virus
begins to replicate inside these cells. Replication of the Ebola and
Marburg viruses has also been seen within endothelial cells, which
explains a grand part of its pathogenicity [42-44]. After attacking the
dendritic cells, macrophages and monocytes, the innate immune
response is severely affected, this is also detrimental to the adaptive
immune response [5-7] whilst travelling in the previously mentioned
cells; the virus migrates towards secondary lymphoid tissue, gaining
access to a whole new repertoire of immune system cells. Filoviruses
show affinity for several cells and can eventually be found in several
non-lymphocytic cells in advanced stage disease [45-48]. Numerous
receptors promote the entry and adhesion of filoviruses, although these
mechanisms are still not completely understood. It appears that type C
lectins in dendritic cells confer the virus with the ability to attach to
specific intercellular adhesion molecule 3 (ICAM3), giving way to the
infection mediated by the filovirus’ glycoprotein [49]. Furthermore,
type C lectins in human macrophages specific for galactose/N-
acetylgalactosamine, which are expressed by cells of monocytic origin
also promote viral entry. Once infected, the ZEBOV begins using these
cells to produce pro-inflammatory cytokines and viral proteins [50].
The viral protein VP35 prevents the production of type 1 interferon
(IFN-α and IFN-β) and VP24 interferes with interferons α, β and γ’s
ability to produce an antiviral cellular state [51,52]. These antagonistic
effects against interferons are not only implicated in advanced stages of
the infection with high viral loads, but also in early stages regarding
the innate immune system’s dysregulation. Dendritic cells infected by
ZEBOV are incapable of maturing into antigen presenting cells (APCs)
and are therefore incapable of activating T lymphocytes. They are also
unable to produce a series of pro-inflammatory cytokines which are
necessary for T-cell signaling [44,53,54]. Infected monocytes and
macrophages are also incapable of producing interferons, but they
retain their ability to produce TNF and other pro-inflammatory
cytokines. The viral particles are also capable of activating
polymorphonuclear leukocytes such as neutrophils to release their
preformed granules while also causing them to enter an activated state
[42,55,56].
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Invasion and Evasion Mechanisms
Several components of the ZEBOV genome have been identified,

some of which are: nucleoprotein RNA polymerase, glycoprotein,
VP24, VP30, VP35 and VP40. The ones that seem to be the most
involved with the virus’ pathogenicity are VP35, VP24 and its
glycoprotein [57].

VP24
Viral Protein 24 (24 kDA) inhibits the intracellular activity of IFN-α.

It blocks the signaling pathway by interacting with karioferin alpha 1,
preventing its accumulation within the nucleus [52]. This “blockade”
occurs due to the inhibition of transcription factors STAT1 and STAT2,
diminishing the expression of type 1 IFN [58]. It also increases the
amount of nitric oxide (NO) in a directly proportional fashion [45].

VP35
Viral Protein 35 inhibits the activation of transcription factors IRF3

and IRF7, which act on the innate immune system during its response
to the virus. IRF7 acts on type 1 interferon genes, regulating IFN-α
genes and possibly activating the enzyme PIAS1, which inhibits the
STAT1 mediator gene and its DNA binding capacity, promoting this
gene’s silencing [59,60]. VP35 can be found within the cytoplasm
where it interacts with the SUMO protein, which promotes the
ubiquitinization of IRF7 in dendritic cells. It also blocks the
recruitment of IRF7 by IFN-α and IFN-β genes [61-63]. It has also
been suggested that VP35 suppresses sRNA in endothelial cells, along
with iRNA [64].

Interestingly, VP35 causes dendritic cells to express an increasing
amount of IL-6, IL-12, TNF-α and type 1 IFN. They also produce less
CD40, CD80, and CD86, causing a stall in the cell’s maturing process
[65-69]. RIG1 is also inhibited by VP35 in dendritic cells, causing
interference in the IFN production pathway, apoptosis regulation and a
diminished immune response against the virus [70-74].

GP
The glycoprotein has two active forms, the structural glycoprotein or

virion glycoprotein (vGP), and secreted glycoprotein (sGP) [75,76].
The vGP forms trimers that bind to endothelial tissue, add themselves
to its genome and provoke changes in the infected cell’s morphology,
causing them to swell and detach from the basement membrane. The
vGP’s affinity for endothelium is explained by a mechanism similar to
one observed in retroviruses known as “pseudotyping”. This explains
why the vGP is unable to bind in some genetically predisposed
patients, whom remain asymptomatic and promote its survival. This
provides a unique window of opportunity for the development of
targeted treatments [77,78].

sGP
The sGP’s toxicity is directly proportional to its quantity. Viral

replication occurs initially by this glycoprotein’s invasion of endothelial
cells due to transfection. These cells are used as viral DNA replication
machinery. Afterwards, sGP will also provoke the cell’s death, resulting
in a massive release of viral copies to keep promoting infection in
surrounding cells as seen on Figure 1 and Figure 2.

The damage and loss of these endothelial cells can promote an
increase in permeability, exposing the basement membrane and
compromising vascular integrity [75–80].

On the other hand, evasion mechanisms include epitope masking
and steric shielding of membrane proteins, such as MHC1 and β1
integrin (Figure 1) [81]. These mechanisms entail the occlusion of
MHC1 with the glycated portion of the GP. This mechanism is unique
to the EBOV [82]. Because of these mechanisms, the EBOV is able to
avoid the humoral immune response, since highly immunogenic
epitopes are kept from the immune system. Furthermore, the GP
prevents adequate antibody production by creating a
microenvironment incompatible with their effective production.
Therefore it can be said that the ZEBOV also affects the immune
response mediated by lymphocytes in an indirect fashion [83-87].

Cytokine storm
The infection by EBOV causes changes in the immune response,

expressing different cytokines in an aberrant fashion, generating a
cytokine storm which causes lymphapoptosis amongst other cytotoxic
effects in different cell lines [88].

Numerous cytokines increase their expression, provoking a
recruitment of immune cells and a pro-inflammatory response. Studies
vary regarding the amounts of cytokines expressed, with some
reporting changes while others report normal levels. The cytokines in
Table 1 tend to be affected by the EBOV, causing their levels to either
increase or decrease. The main cells affected are macrophages and
dendritic cells, which promote and stimulate the maturing and
secretion of pro-inflammatory cytokines. No difference has been seen
amongst the chemotactic changes between different strains of ZEBOV
[88,89].

Increased levels of IL-6, IL-1b, TNF-α, MCP1 and MIP1-α and β
have been reported in the first week following infection in humans
who become symptomatic. In addition, a higher fatality rate has been
associated with increased levels of these cytokines [90-93]. However,
asymptomatic patients have shown a disappearance of this response
within 2-3 days [94,95].

Cytokine Function Change

IL-1B Produced by activated macrophages, stimulates thymocytic proliferation, inducing release of IL-2, maturing
and proliferation of B lymphocytes. Highly involved in pro-inflammatory and pyrogenic processes [96,97]

Increase [44,88,91]

IL1-RA Secreted by various cell types, including immune cells, epithelial cells and adipocytes. Natural inhibitor of
IL-1B [98]

Increase [88,91]

IL-2 Generates tolerance and immunity due to its effect on T lymphocytes. Promotes the differetiation of T
lymphocytes into effectors and memory cells after being exposed to an antigen [99]

Increase, normal or decrease
[88,91]
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IL-3 Immune response, positive regulator of cellular proliferation and myeloid leucocytic differentiation [100] Decrease [88,91]

IL-4 Activates humoral immunity, inducing the expression of MHCII in B lymphocytes. Amplifies the secretion
and expression of immunoglobulins. Promotes isotope change in B lymphocytes. Negative regulation of
macrophage activation. Promotes antivirus defense [101,102]

Decrease [88,91]

IL-5 Final differentiation and proliferation of B lymphocytes. Promotes JAK-STAT pathway. Immune response
[103]

Decrease [88,91]

IL-6 Secreted by macrophages in response to pathogens. Fever mediator. Important in the acute immune
response. Stimulates neutrophil production in the bone marrow and maturing of B cells [104]

Increase [88,91]

IL-8 Neutrophil, basophil and T lymphocyte chemotaxis. Involved in the neutrophil activating process. Secreted
by several immune cells in response to an inflammatory stimulus [105]

Increase [88,91]

IL-9 Cellular growth and proliferation. Immune response [106] Decrease [88,91]

IL-13 Decreases cytokine production. Immune response. Activates STAT6 protein. Proliferation of B lymphocytes.
Macrophage activation [101]

Decrease [88,91]

IL-15 Stimulates T lymphocyte and Natural Killer (NK) proliferation. Prevents apoptosis [107] Increase [88,91]

IL-16 Stimulates CD4, monocyte and eosinophil migratory response. Prepares CD4 cells to react to IL2 and IL15.
Induces expression of IL2 receptor in CD4 cells [108]

Increase [88,91]

TNF-α Secreted mainly by macrophages. Pyrogenic factor. Positive regulator of apoptosis, NO, caspases, Ig
secretion, cytokine production, mitosis, caspase activation and fever [109,110]

Increase

[88,91,127]

MIP-1a Monocyte, eosinophil, neutrophil and lymphocyte chemotaxis. Induces inflammatory response. Provokes
TNF production [111]

Increase [88,91,127]

MIP-1b Involved in the viral and inflammatory response, cellular adhesion and cellular mobility. Monocyte and NK
chemotaxis [111]

Increase [88,91,127]

MCP-1 Monocyte, basophil, lymphocyte and macrophage chemotaxis. Involved in JAK-STAT pathway. Provokes
NO synthesis [112,113]

Increase provokes
lymphapoptosis through JAK-
STAT pathway [88,91,127]

MCSF Macrophage differentiation, major role in inflammation, involved in Ras signaling pathway [114,115] Increase [88,91]

MIF Inflammation, cellular proliferation, and macrophage activation [116] Increase [88,91]

IP-10 Chemotaxis of T lymphocytes and NK cells. Proliferation of macrophages and dendritic cells. Involved in the
inflammatory response and antiviral defense [117,118]

Increase [88,91]

GRO-a Neutrophil chemotaxis. Involved in inflammation and induction of cellular proliferation [119] Increase [88,91]

Table 1: Cytokines involved in the infection by EBOV.

Reactive oxygen species (ROS) and reactive nitrogen species (NOS)
production increases within infected cells during the cytokine storm
[120]. This event causes an immune unbalance, provoking cytotoxicity
and immune cell death at the signaling site. It also causes local
vasodilation, increased endothelial permeability and expression of
adhesion molecules [121].

The cytokine storm causes several other effects in the body, such as
suppressed antiviral immune response (caused by the diminished
levels of IL-3, IL-4 and IL-5), macrophage and neutrophil chemotaxis
(due to increased levels of MCP-1, MIP-1a, MIP-ß and IL-8), increased
cell differentiation (IL-2), and inflammation (IL-1, IL-6, IL-9 and
IL-13). It is important to remember that several of these cytokines can
cause apoptosis in immune system cells (decreased IL-15 and
increased TNF-α, MIP-1a and MCP-1) [41,67,122,123].

Lymphapoptosis
EBOV infection causes significant lymphopenia at increased

viremia levels, as well as during an extensive cytokine storm [67,124].

The EBOV does not interact directly with lymphocytes as it does with
macrophages and dendritic cells, but it affects them indirectly due to
the effects of the cytokine storm [125,126].

Wauquier et al have noted that T lymphocyte levels in survivors are
roughly five times greater than those found in deceased patients.
Consequently, an effective, active and quick lymphocyte mediated
immune response might be enough to contain the disease from
progressing [88].

The signaling pathways induced by the EBOV which cause
lymphocyte apoptosis are related mainly to the TRAIL (TNF-related
apoptosis-inducing ligand) and Fas (CD95) pathways, with the latter
being the most common of the two [127,128]. The first pathway is
activated by TNF (mainly TNF-α), since its levels increase during the
cytokine storm and can therefore be related to this phenomenon [129].
The second pathway is activated by its ligand (FASL), which is
considered a cellular death protein, since it leads the cell towards
apoptosis due to the caspase pathway [67]. Another exacerbating factor
for leucocyte apoptosis is the excessive production of nitric oxide due
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to the viral invasion of macrophages and dendritic cells [130]. This
lymphapoptosis puts the patient in an immunodeficient state, making
him or her considerably more susceptible to virtually any other kind of
infection [131,132].

An elevated mortality rate has been seen in patients with a
suppressed humoral response, which is associated to the previously
discussed lymphopenia [133,134] (Figure 1).

Figure 1: Cytokine storm provoked by the Ebola Virus. A) Dendritic
Cells (DC), the right cell represents a healthy DC is secreting great
amounts of different cytokines such as IL, IFN and TNF in response
to the presence of EBOV, the left dendritic cell is being affected by
the presence of the virus and decreases its expression of IFN and
some ILs previously described, as a consequence of the Ebola
Infection. Observe the multiple interactions between cells and the
secreted virus glycoproteins (GP) to the environment. GP can affect
endothelium cells as well as other cells. Furthermore, this
interactions cause death cell pathway activation in Leucocytes. B)
Steric Shielding produced by EBOV. Observe the MHC receptors
being blocked by GP.

Clotting Abnormalities
Massive hemorrhages throughout the body are one of the cardinal

points of EBOV infection [135]. These coagulation defects present as
ecchymosis, petechiae and uncontrollable hemorrhages [45]. These
hemostatic defects can lead to Disseminated Intravascular Coagulation
(DIC), a potentially fatal condition distinguished by the formation of
intravascular thrombi and an uncontrollable activation of the
coagulation cascade [136-138].

Tissue factor (one of the coagulation cascade’s initiators) is
overexpressed in monocytes and macrophages, probably due to the
cytokine storm [139]. Although part of this factor is produced in
vascular endothelium, this amount would not explain the widespread
activation of the coagulation cascade seen in EBOV infection. The
expression of tissue factor in monocytes and macrophages can cause
DIC, which will result in the formation of several fibrin meshes in
affected organs Figure 2 [140].

Figure 2: The image represents a vascular endothelium. It is
important to highlight the release of virus to par-shooting of the
tissue factor released from monocytes and endothelial cells. Note
the loss of vascular integrity causing bleeding during the illness. TF:
Tissue Factor; EBOV: Ebola Virus.

Geisbert et al found fibrin around macrophages infected by EBOV
in the first four days following exposure to the pathogen [139]. This is
relevant due to the association that fibrin has with multiple organic
failure [141].

Clinical Picture
Filovirus infections in humans have an abrupt onset [142]. They are

distinguished by the appearance of fever, myalgias, headaches, and
gastrointestinal symptoms such as nausea, vomit and diarrhea, similar
to the initial stages of infection by influenza [34]. Several patients
present a maculopapular eruption roughly 5-7 days after the onset of
symptoms [143]. Mortality is associated with an increase in viremia
along the course of the infection. The disease can eventually lead to
shock, seizures and disseminated intravascular coagulation [144,145].

A study conducted in the Democratic Republic of the Congo
analyzed the frequency of several symptoms in patients infected with
ZEBOV. The most common symptoms were fever (92%), intense
fatigue (71%), diarrhea, nausea or vomit (68%), abdominal pain (47%),
headaches and myalgia (45%), anorexia (39%), dysphagia (26%) and
conjunctivitis (16%) [146].

A more recent study showed that the most frequent symptoms are
fever (87.1%), fatigue (76.4%), anorexia (64.5%), vomit (67.6%),
diarrhea (65.6%), headache (53.4%), abdominal pain (44.3%) and
apparently unexplainable hemorrhages (18%) [147] Figure 3.
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Figure 3: Symptom presentation from onset until death due to
EBOV infection, divided into preclinical phase (Green), clinical/
infectious phase (Yellow) and complicated phase (Red), which can
be indicative of the patient’s imminent demise. The vertical axis
presents a statistical estimate of symptom onset according to their
order of appearance, from the most common to the rarest.

EBOV generally has a 2-21 day incubation period, with an average
of 12.7 days [148-150]. Beginning at symptom onset, patients acquire
the ability to infect others in the ways previously described [148]. The
latency period lasts approximately 10 days [33]. The average amount of
time between symptom onset and death is 10 days [9,151]. More severe
cases show a much faster symptomatic progression, leading to death
6-16 days after symptom onset [151]. Only 19% of patients have shown
bleeds without an apparent cause in the current outbreak [147,152].

Some researchers have aimed to aid the diagnosis of EBOV
infection using laboratory studies, since the clinical picture can be
quite similar to other hemorrhagic fevers. The most accurate study so
far has been quantitative RT-PCR, which gives an infected patient’s
viral load [153,154]. Patients with a viral load exceeding 10 million
copies have an approximate mortality rate of 94%. On the other hand,
patients with a viral load beneath 100,000 copies tend to have a high
survival rate. Furthermore, a study conducted in Sierra Leone during
the 2014 outbreak showed that mortality is more closely linked to a
patient’s viral load than his o hers amount of time exposed to the virus
[154].

Treatment and Outcome
Multiple supportive care therapies have been implemented in

infected patients. For instance, some hospitals in Sierra Leone and
Liberia have administered abundant intravenous fluids along with
antibiotics such as ceftriaxone [153,155]. The ZMapp vaccine, which
was developed using monoclonal antibodies aimed to halt the disease’s
progression, was tested during the 2014 outbreak [156].

A patient can be considered cleared of the disease after the diseased
period (approximately 14 weeks), followed by 9 weeks with no evident
viremia. Ebola survivors are not infectious and it is believed that they
develop resistance to the disease [157].

Recently, Ebola ca Suffit or “Ebola this is enough” cluster
randomized phase 3 trial, a new Ebola vaccine that is leaving other
vaccine candidates far off, claiming in a paper published by The Lancet
[158], that the phase III trial has very promising results, using a
recombinant, replication competent vesicular stomatitis virus, they
were able to express a surface glycoprotein of ZEVOB and a nobel way
of identifying high risk subjects and their contacts called Ring
Vaccination, defined as vaccination of a cluster of individuals at high
risk infection. The team identified all the subjects that were in close
contact with a confirmed case of ZEBOV in Guinea, as well as the
contacts of those contacts, being identified as clusters. Began on March
23, 2015 and consisted in administration of one dose of 2 × 10^7
plaque forming units of the rVSV-ZEBOV vaccine to candidates as an
intramuscular injection in the deltoid muscle to adult contacts and
contacts of contacts of patients with confirmed EBOV infection, then
they were subjected to observation for 30 minutes for signs of
immediate adverse effects, then again on days 3,14,21,42,63 and 84
post vaccination, any clinical manifestation resulting in EBOV
infection would be then confirmed by detection of EBOV RNA by
reverse transcriptase PCR.

Out of ninety clusters that included 7700 people were randomized
to vaccinate immediately or delay vaccination by 3 weeks, depending
on the risk of infection, after 10 days there was not a single case of
ZEBOV infection in the immediate vaccination group with a 100%
vaccine efficacy, however the delayed vaccination group presented 16
cases of infection. There was also 1 case of febrile illness linked to
vaccination but the patient recovered without any further
complications [158,159].

Conclusion
A lot of dedicated research has taken place in the fields of virology

and medicine to try and understand the Ebola virus pathophysiology
and transmission mechanisms. Thousands of people have died in
recent outbreaks, several of which were part of humanitarian forces
from international organizations trying to protect the health and
wellbeing of others. This review could not have been written without
their brave efforts. A vaccine is on its way and effective treatment still
seem to be far away, however, the scientific community is working
relentlessly to try and put a halt to this fulminant disease.
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